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Depinning transition for a screw dislocation in a model solid solution
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On the basis of the classical dislocation theory, the solid solution hardening (SSH) is commonly ascribed to
the pinning of the edge dislocations. At the atomic level, the theoretical study of the dislocation cores contrasts
with such a prediction. Using the static molecular simulations with some interatomic effective potentials, we
demonstrate numerically that the critical resolved shear stress associated with a screw dislocation in a random
Ni(Al) single crystal has the same order as the edge one. Such a result is imposed by the details of the
dislocation stacking fault and the core dissociation into Shockley partials. The SSH statistical theory is em-
ployed to tentatively predict analytically the data acquired through our atomistic simulations at different Al

concentration.
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I. INTRODUCTION

In the alloy manufacturing the solid solution hardening
(SSH) is a standard process which allows to increase the
yield stress of a material by dispersion of some atomic-sized
obstacles across the dislocation glide. The choice of the im-
purity and which proportion is required is an important issue
in the commercial alloy design."> On the condition that these
impurities remain in solution, favored either by a thermal
treatment or the alloy thermodynamics, the microstructure is
unchanged but the dislocations are pinned by the randomly
distributed obstacles. The dislocation pinning yields an in-
crease in the material strength without involving large inho-
mogeneities such as inclusions or grain boundaries, by con-
trast to the other methods as the precipitation strengthening
or the strain hardening.

The dislocation impinging on a random distribution of
obstacles is a standard problem of theoretical metallurgy3-'0
and statistical physics!'!~!> as well. Only recently this prob-
lem could have been addressed with some three-dimensional
atomistic simulations'®-23 that shed a new light on points that
were still a matter of debate in material science. However the
difficulty of developing reliable interatomic potentials for
modeling dislocations in alloys confines the atomistic simu-
lations to only a few systems. The Ni(Al) y-phase is one of
them and corresponds to the prototypical case for the binary
substitutional alloys with a high order energy and a high
solubility limit, about C5;=10 at. % which involves a broad
concentration range for the stability of the solid solution.

The static atomistic simulations allow to compute the
critical resolved shear stress (CRSS) for an isolated disloca-
tion in a single crystal of a purely random solution.'$2425 In
the model Ni(Al) solution, the CRSS associated with an edge
dislocation was found® to increase roughly linearly at a rate
of about 30 MPa per atomic percent. This result agrees with
the experimental data on the Ni(Al) hardness' (H) from
which the flow stress o can be deduced by application of the
empirical linear relation?®?” H=3¢ (valid for metallic crys-
talline materials). The main question raised by such a result
bears on the role of the screw dislocation segments. Accord-
ing to a widespread belief drawn on the first-order elastic
dislocation theory (see textbook in Ref. 28), the screw dislo-
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cation CRSS would be smaller than the edge one. By con-
trast, our present atomistic study shows that the screw CRSS
has the same order as the edge one for different Al densities
Ca, between 2 at. % and 12 at. %. We analyze our results in
terms of the interaction between the dislocation core and
some isolated obstacles either single Al placed at different
positions around the glide plane or Al dimers with different
positions, orientations and bond lengths. The dominant com-
ponent of the dislocation pinning is found to be a short-range
interaction of typically few Burgers vector between the ob-
stacles and the distinct Shockley partials of the dissociated
dislocation. This rather short range interaction is to be com-
pared with the partial cores which spread over few lattice
spacings.?®3% Our systematic study of every dimer configu-
ration allows us to enhance the role of the chemical interac-
tion between nearest solutes which yields some pinning
strengths that diverge from the simple superposition of the
strain fields due to each solute.

In addition to providing some data about the strength of a
single Ni(Al) crystal, our atomistic simulations allow us to
challenge the different versions of the statistical theory for
the SSH.3>" The corresponding analytical models intend to
provide an estimate of the CRSS from the elementary inter-
action between a single dislocation and an isolated obstacle.
Most of the other effects on the dislocation pinning as the
presence of the grain boundaries, the dislocation forest and
the thermal activation of the solute motion are assumed not
to play an important role. This proves to match the condi-
tions of our numerical simulations which permits us to com-
pare the theoretical predictions to the simulation data. A
common point to the different versions of the SSH theory is
to have been derived in the framework of the continuous line
tension model where the dislocation is thought of as an elas-
tic string anchored by a single type of obstacle. The split
between the different versions of the theory stems from the
various assumptions made on the critical string configuration
and how the depinning proceeds. For the sake of consistency,
the string-obstacle interaction parameters are determined
from our atomistic study and the statistical models end re-
sults are compared to our direct computation of the CRSS for
the Ni(Al) single crystal. Among the theories proposed to
compute the CRSS, we show that some of them quantita-
tively agree with our computations for the concentrated solid
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solutions, i.e., 2 at. %<<Cj,;<12 at. %. The concordance
of the atomistic simulations and the SSH continuous theory
confirms the plausibility of a multiscale approach to the plas-
tic flow in the inhomogeneous media.

The present paper is organized as follows: In Sec. II, the
atomistic method to compute the CRSS for a screw disloca-
tion is described and the results are compared to the edge
ones. In Sec. III, the different analytical models for SSH are
presented and discussed in regard of our atomistic simula-
tions. In Sec. IV, our study is resumed and our future works
announced.

II. MOLECULAR STATIC COMPUTATION OF
THE SOLUTION STRENGTH

By contrast to the phenomenological line tension ap-
proach applied to the SSH,?"3? the atomistic simulation al-
lows to capture the main physical aspect of the dislocation
core by integrating the nonlinear many-body interactions be-
tween the atoms displaced during the dislocation course. In
our simulations the atomic interactions are modeled through
the embedded atom method (EAM), the detail of which has
been published elsewhere.!®3334 One must notice that two
typo errors must be corrected before implementing the EAM
potentials. For the Ni-Ni interaction (see Ref. 35) and for the
Ni-Al interaction the coefficients gy; and g,; must be ex-
changed in Ref. 19. According to private communications
with other authors these corrections have been taken into
account in other earlier works using the same method. The
simulation cell (see Fig. 1) is oriented so as that the horizon-

tal Z planes are the (111) of the face centered cubic (fcc)
lattice while the Y direction corresponds to the screw Bur-
gers vector b=[110]ay/2 and the X direction is orthogonal to
Z and Y and points at the dislocation motion. The simulation
box size along the directions i=X,Y,Z is denoted by L;. The
periodic boundary conditions are applied along X and Y
while the external applied stress 7,, is produced by imposing
extra forces to the atoms in the upper and lower Z surfaces.'®

In order to form a screw dislocation between the two (111)
central mid-planes, the displacement field of the elastic solu-
tion for a dissociated screw with Burgers vector b is applied
to the atoms of the simulation box. In order to compensate
the Burgers vector shift at the crossing of the boundaries
along X, the corresponding periodic boundary conditions are
tilted from »/2 alongside Y. The ideal solid solution is then
formed by substituting randomly Ni atoms with Al in the
proportion fixed by the Al atomic density C,;. The solute
distribution depends on the seed of the numerical random
generator. For each Cy; ranging from 2 to 12 at. %, several
distributions have been generated. The molecular statics
(MS) simulations are performed to minimize the total en-
thalpy under a fixed applied shear stress. The external ap-
plied stress is incremented by 0.3 MPa and for each incre-
ment the minimization procedure is repeated until it either
converges to a required precision or the dislocation starts to
glide. To minimize the size effects in the simulations of the
random solution, we chose L,=300b which allows to neglect
the interaction between an obstacle and its periodic image
and to achieve satisfactory statistics. The same method with
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FIG. 1. (Color online) View of the (111) glide plane and the
dissociated screw dislocation in the Ni(Al) simulated solution at
various concentrations: Cy=2 at. % (lhs), C5y=6 at. % (center)
and C =10 at. % (rhs). The box size is 300 b along Y, 32 b along
X and 34 b along Z (orthogonal to this paper sheet). The Shockley
partials are colored in violet (dark curves) and the Al atoms in
blue-green (gray dots). The external shear stress has been fixed to
one half of the CRSS.

the same interatomic potentials has been employed in Ref.
25 for the edge dislocation.

In Fig. 1 we reported a snapshot of three typical systems
computed for an external shear stress smaller than the CRSS
7.. The atoms involved into the partials are recognized by
their default configurations in first neighbor positions. The Al

atoms that participate in the (111) planes that bound the
glide plane have also been reported on these three pictures.
The screw dislocation oscillates in the crystal in a way simi-
lar to the edge one as reported earlier.” It is worth noticing
that such a wavy profile has been observed experimentally3®
in some other type of solid solution as Cu(Al) and Cu(Si).
The dislocation does not form a large bow between well-
separated pinning points but rather conserves a wavy shape.
Such configurations of the dislocation impinged on a random
solution do not correspond to the one obtained within a phe-
nomenological elastic string model as the one used for in-
stance in the work of Foreman and Makin.’! The reason is
threefold: (i) the solution is concentrated and thus the iso-
lated pointlike obstacles are rare, (ii) the interaction disloca-
tion obstacle is not a pointlike force and (iii) the pinning
strength of the Al obstacle is much weaker than what can be
estimated through the elastic stress-strain field of a Volterra
dislocation. As detailed further (see Table I) the pinning
strength of an isolated Al on the screw dislocation is about
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TABLE I. Summary of different pinning obstacles for both the
leading (subscript /) and the trailing partials (subscript ¢) of the
screw dislocation, their pinning force « (normalized by ub?), and
their force range w.

Nature Text ref. a; and wy o, and w,
Single (al) 0.0020/1.145  0.0111/0.88b
Ist planes (b1) 0.0088/1.056  0.0059/2.20b
Single (a2) 0.0036/1.41b 0.0032/1.69b
2nd planes (b2) 0.0053/1.52b
Single (a3) 0.0011/2.8b
3rd planes (b3) 0.0009/2.85b
Ist neighbor (c) 0.0022/0.77b 0.0264/2.19b
Noncrossing pair (d) 0.0006/0.15  0.0139/1.49h
(e) 0.0033/1.036  0.0168/1.14b
(f) 0.0079/0.72b  0.0086/2.82b
(2) 0.0207/1.8b 0.0068/2.03b
(h) 0.0153/1.056  0.0106/2.33b
3rd neighbor (i) 0.0094/1.24b  0.0147/2.45D
Crossing pair G) 0.0026/0.43b  0.0206/2.09b
2nd neighbor (k) 0.0137/1.24b  0.0142/2.45b
Crossing pair Q)] 0.0184/2.87b  0.0224/2.38b
(m) 0.0096/1.096  0.0146/1.07b
Ist neighbor (n) 0.0157/1.79h
Crossing pair (0) 0.0171/1.87b  0.0035/1.14b
(p) 0.0218/2.776  0.0161/1.37b

one hundredth of the line tension meanwhile the elastic
theory in a very first-order version would predict one order
larger.

In our MS simulations when the dislocation moves freely,
we let it glide for ten passages in the simulation box in order
to probe possible stronger pinning configurations created by
the relative displacement of one Burgers vector b at each
passage between the plane above and below the glide plane.
Since L,~32 b, we assume that when the dislocation has
glided over 10 X L, we reach the maximum of the applied
shear stress for the considered random distribution. Such a
glide distance has the same order as the mean free path of a
gliding dislocation through the forest dislocations in a metal-
lic polycrystal where the dislocation density may reach
10° cm™2. In most of our computations the dislocation does
not encounter a new pinning configuration after four pas-
sages in the simulation box. For each concentration, the cal-
culations of the CRSS, 7. from various distributions have
been reported in Fig. 2(a) where each open symbol corre-
sponds to a different random distribution. The dispersion on
the measure of 7. is related to the finite-size effect along Y.
The choice of the suitable L, results from a compromise
between the computational load and the statistics.

The order of magnitude of the solution strengthening is
about 30 MPa per atomic percent of Al which is noteworthily
similar to the edge one, obtained from Ref. 25 and reported
in Fig. 2(b) for further comparison with the analytical mod-
els. Such a result contrasts seriously with the classical calcu-
lations based on the elastic theory of dislocation.’> However
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FIG. 2. Variation of the critical resolved shear stress 7. for a
screw dislocation (a) and for an edge dislocation (b) against the Al
concentration C,; computed from the MS simulations with different
Al random distributions (symbols). The estimations made with the
analytical models have also been reported: Fleischer-Friedel (Ref.
37) (dotted line), Friedel-Mott-Suzuki (Ref. 6) (full line), Mott-
Nabarro-Labusch (Ref. 5) (dot-dashed line) and Butt-Feltham (Ref.
9) (dashed line).

this can be fairly understood from the analysis of the inter-
action between the dislocation and a single obstacle at the
atomistic level. We carried out the same type of MS simula-
tions as for the random solid solution except that only one
isolated Al atom is placed in a simulation cell of pure Ni.
Then the external shear stress 7, is incremented from zero to
7,, at which the dislocation liberates. Since the simulation
cell is periodic along Y, the obstacle and its periodic images
form a regular array of obstacles separated by L,. The bal-
ance between the Peach-Kohler force and the obstacle pin-
ning leads to f,,=(7,—7,)bL, where 7, is the screw Peierls
stress and b is the Burger vector of the whole dislocation.
Because of the nonlinearity of the atomic interactions, we
found that the pinning strength of an isolated obstacle de-
pends on its place above or below the glide plane as well as
on which partial is concerned. Our results are reported on the
first lines of Table I where the corresponding strength f,, has
been normalized by the constant ub? to provide the standard
pinning coefficient denoted by «. We choose wu
=74600 MPa, the shear modulus for the Ni (111) planes
[ci1—cia+cas]/3. Although the normalization has been real-
ized with the value of ub? for pure Ni, one must bear in
mind that this normalization is a conventional way to present
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FIG. 3. (Color online) The internal potential energy for a disso-
ciated screw dislocation against the dislocation obstacle distance.
The obstacle is an isolated Al in the (111) planes above the glide
plane: the first plane (full line), the second plane (dashed line) and
the third one (dot-dashed).

the result. In Table I the single obstacle denoted by (al)

corresponds to an isolated Al placed in the (111) plane situ-
ated just above the glide plane while (b1) is for an Al which

participates in the (111) plane just below the glide plane. The
pinning strength of a single Al atom is found to have the
same magnitude as for the edge dislocation?> which confirms
our results about the same solid solution CRSS for both edge
and screw dislocations. The strengths of some isolated Al

have also been reported in Table I, for the farther (111)
planes. For the second nearest one, the pinning forces are
referenced by (a2) and (b2) for the Al above and below the
glide plane, respectively. For the third nearest planes, the
pinning forces are arranged in the same order and referenced
by (a3) and (b3).

On the condition that the dislocation core distance to the
obstacle remains larger than the core extent, it is possible to
analyze the interaction in terms of the continuous elastic
theory. We intend applying such an approach for the ob-

stacles situated in the third (111) plane from the glide plane.
For that case, the potential landscape of the dissociated screw
dislocation (dot-dashed line in Fig. 3) has the form
B{1/[22+(x+d)*]-1/(z>+x%)}, i.e., the one for two opposite
edge dislocations separated from d, the dissociation
distance.®®?8 According to the elastic theory, the interaction

prefactor B is given by “%%(AV), where v is the Ni Pois-
son coefficient and AV is the atomic volume variation due to
the Al impurity in Ni. If one neglects the interaction between
the obstacle and the farthest partial, the corresponding
pinning coefficient for a single partial is thus «
=%’:(AV)b*\e"§/ (87b*Z%). The distance Z between the third
(111) plane and the glide plane is Z=5b/\6. This corre-
sponds to two and a half of the interplane distance along the
[111] direction. To provide an estimate of the pinning force
we choose b*=b/12 which is the edge component of a per-
fect Shockley partial. The volume variation can be estimated

according to a method described in the textbook,*® AV
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=3vnag'day/dCy, where the Vegard’s law for Ni(Al) is
used to express aaldao/dCA1=0.O763. Then one found «
=0.0015 which is of the same order though still larger than
what has been found in our simulations [see lines (a3-b3) in
Table I]. If instead of b*=b/\12 one chooses the effective
Burgers vector computed through a Peierls-Nabarro
method®” then a=0.00083 which agrees better. A more quan-
titative study would require the account for the modulus mis-
fit. This comparison allows to emphasize that as a conse-
quence of the edge Burgers components of both partials the
size effect dominates the modulus misfit effect often invoked
in the analysis of the screw-impurity interaction. Since the
partials have some Burgers vectors that are not purely screw,
a hydrostatic stress field is localized around the partial
cores® which renders the partials of a screw similar to the
ones of an edge, at the atomic scale. Far away from the
center of mass of the dislocation, since the edge components
of the leading and the trailing screw partials are opposite, the
hydrostatic stress field of both partials annihilate each other
and the elastic theory prediction for a purely screw disloca-

tion is recovered. In the first and second (11_1) planes, the
shape of the interaction potential (full and dashed lines in
Fig. 3) is imposed by the nonlinear atomic interaction in-
volved during the passage of the impurity through the core of
the dislocation. Concerning the pinning strength on a single
Al atom, we distinguish a common trend for screw and edge
dislocations:>> The anharmonicity enhances the pinning
strength in the compressive regions in regard of the tensile
ones. In our simulation cell, the compressive region of the
edge dislocation is situated above the glide plane whereas for
the screw two compressive regions can be distinguished,
e.g., below the glide plane for the leading partial and above
for the trailing partial. The obstacle labeled al (b1) in Table
I visits the compressive region when it crosses the trailing
(leading) partial. In agreement, the stronger pinning strength
is found for the trailing (leading) partial. Furthermore the
comparison of the pinning strengths in the separated com-
pressive regions shows that the trailing partial is anchored
more strongly than the leading one. The same trend can be
noted for the tensile regions. Noteworthily the previous
remarks are consistent with the results on the edge
dislocation.? The latter trend finds some substantiations into
the fact that the more stable position of the Al solute is inside
the stacking fault ribbon, as can be seen in Fig. 3. The po-
tential energy measured with respect to the isolated Al far
away from the dislocation core should yield a diffusion cur-
rent toward the dislocation stacking fault. This is a Suzuki-
type effect which operates on both types of dislocation. This
could lead to a classical dynamic strain aging of the fcc
substitutional alloys.*’ In our computation the diffusion is
frozen and such an effect is thus disregarded as it is indeed in
the SSH statistical models discussed below. Another conse-
quence of the absence of the solute diffusion is that there is
no short-range ordering even for the Al concentrated solid
solutions. It must be noticed that the interaction potential
with the nearest obstacles (see Fig. 3) is far from the simple
shape assumed in some more phenomenological approaches’
and even from an elastic theory3>*! which neglects the dis-
location core geometry. As it is required for the construction
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of a statistical model, some of the details of the atomic scale
must be left off and one must retain only the essential quan-
tities that are identified as important. According to the SSH
theory, an obstacle can be characterized by an interaction
range w and a pinning force f,,, or equivalently a binding
energy U. We thus attempt to estimate such quantities and to
that purpose we chose arbitrarily a rounding method. We
distinguish only two different cases depending on the ob-
stacle position with respect to the leading and the trailing
partial. For the pinning strength o we choose the maximum
of the interaction force. The definition of the interaction
range w requires a more tactful treatment since in principle
the short-range obstacle-core interaction is superposed to a
long-range elastic one and further the interaction potential is
not symmetric for an obstacle position ahead and behind the
partials, mainly because of the presence of a stacking fault.
Around the absolute force maximum, we measure w as the
shortest distance to which the force vanishes or falls to a
local minimum. We choose to neglect the variations of the
force over that limit. We concede that such a point can be
discussed and must be kept in mind for further discussion on
the analytical models. We emphasize that we have been pri-
marily concerned with finding a manner to estimate one of
the key parameters of the theory, w, and that there is no
well-prescribed theoretical way for that. We believe that the
SSH theory should be developed to address specifically the
case of a dissociated dislocation with an interaction potential
similar to the one reported in Fig. 3 rather than the standard
Gaussian-like potentials.

In the present study, when the interaction potential shows
a force maximum near the position of one of the partials we
ascribe the force to this partial. This is a conventional way of
arranging the numerous obstacle forces since the two partials
are actually interacting through the stacking fault. Further
when the obstacle is attractive for the leading partial and
repulsive for the trailing one, the force fields overlap and it
may then be difficult to identify with accuracy the interaction
range. When it has not been possible to separate different
force maximum, we reported the corresponding pinning
strength as being exerted on the trailing one [see (b2-b3)
lines in Table I]. In the fcc symmetry, for the Al concentra-
tion we are concerned with, the density of the Al dimers has
the same order as the density of single Al, i.e., C Alz”Cil
where n=12 is the number of nearest fcc neighbors. Above
Caj=1/n the number of isolated Al vanishes in average. It is
thus of some interest to study the pinning strength of the Al
dimers that might be expected to play a role on the SSH
because of the alloy ordering energy. Among the different
configurations of pairs, we selected those with a distance
between solute atoms corresponding to first, second and
some of the third neighbors in the fcc lattice. Either the
screw dislocation interacts with preexisting Al dimers re-
ferred to as (c—h) in Table I or the dislocation passage modi-
fies the Al-Al bond crossing the glide plane (i-p) in Table 1.
For the noncrossing pairs, the (c—e) configurations corre-
spond to the planar dimer situated above the glide plane
whereas the (f~h) are below. The directions of the dimer
bond before the dislocation passage are [011] (c) and (f),

[101] (d) and (g), [110] (e) and (h), [011]. The dimers that
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cross the glide plane are oriented in the direction [721] (i),

[211] (i), [212] (K), [122] (1), [221] (m), [411] (n), [114] (0)

and [141] (p). Our results on the pinning strength and the
interaction range are reported on the corresponding lines in
Table I. Besides the variable geometry of the crossing pairs,
it is worth noting that the pinning strength of a noncrossing
dimer does not correspond to the simple superposition of the
strength of two isolated Al that would be placed at the re-
ticular sites occupied by the dimer. The resulting strength can
be even smaller than an isolated Al as seen from the com-
parison between the single (bl) and the first neighbor dimer
(f). Tt must be also remarked that some of the dimer strengths
can be larger than two isolated Al at the same position, e.g.,
(b1) and (g) in Table I. The second neighbor Al dimers could
be expected to be more stable than others with regard to the
L1, ordering trend of the Ni(Al) alloy. Such an expectation is
not reflected by the dimer pinning strengths which are not
significantly larger to break the second neighbor pairs al-
though the interatomic potential between Ni and Al particles
was adjusted to fit the corresponding order energy.!® The
forces reported on lines (k—m) are not particularly stronger
than those concerning the first and third neighbor dimers.
Finally if one considers the whole set of the dimer configu-
rations, the pinning strengths for a screw dislocation are not
smaller than for the edge ones reported in Ref. 25.

III. ANALYTICAL MODELS FOR COMPUTING
THE SOLUTION CRSS

The MS simulations allowed us to perform a direct com-
putation of the CRSS at the atomic scale. In the past, differ-
ent statistical theories have been proposed to evaluate the
CRSS of solid solutions. The common assumption of the
various analytical models is that the CRSS can be derived
only from a unique interaction of the dislocation with an
isolated impurity in the glide plane. Although these statistical
models were primary devoted to the computation of the
CRSS for an edge dislocation, there is no theoretical argu-
ment against the application of these models to a screw dis-
location provided that one is able to quantify the model input
parameters. In order to compare consistently the model pre-
dictions to our data on the SSH, the model parameters are
determined from the average of the single Al pinning con-
figurations [lines (al) and (bl) in Table I]. We obtained a
single valued obstacle strength f,,=aub> where @=0.007 is
the mean pinning coefficient for the isolated Al situated in

the nearest (111) planes. We also computed the typical inter-
action range as an average over the different isolated ob-
stacle configurations w=1.3b. Further, since in principle the
models apply to an undissociated dislocation, the leading and
the trailing partials are assumed to be tightly bound. In the
different models, the end formula is usually presented for a
theoretical square lattice which leads to an atomic area of s
=p2. In our system, this is to be changed for s=b*\3/2,42
i.e., the atomic area in the glide plane.

Another quantity required before going into the details of
the models is the dislocation stiffness. In our simulation cell,
we computed the dislocation line energy as the difference
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between the whole atomic potential energy of a simulation
cell with a dislocation and the one of a perfect single crystal
with the same geometry and the same atom number. It was
then possible to obtain the energy per unit length E; of the
straight dislocation in pure Ni. One must emphasize that this
computation implies the stacking fault energy which is not
modeled in the classical estimation of the dislocation energy,
i.e., E,=ub*/2. For the edge dislocation, we obtained E,,
=0.95E; while for the screw E;,=0.61E;. These two quan-
tities depend on the simulation cell geometry (L,,L,) in
agreement with the logarithmic law derived from elastic
theory. Since in the Ni(Al) solid solution (see Fig. 1) the
dislocation length depends on the Al distribution, it is not
possible to compute the dislocation line energy as done in a
pure material where the dislocation is straight. However, one
can expect reasonably that E; should vary as the elastic shear
modulus u and the lattice parameter b, according to the Ve-
gard’s law which leads to a variation of roughly 1 at. % of
C ;- Since such a variation of the dislocation stiffness has not
been considered in the SSH theory we shall not account fur-
ther for such a dependency although for the concentrated
solutions it would be worth accounting for it. To obtain the
dislocation line tension we apply a well-known result from
the isotropic elastic theory?® which tells us that for the screw
I',=E,;(1+v)/(1-v) while for the edge I',=E (1 -2v). We
note that the line tension increase with the cell dimensions
will impact the dislocation roughness through the obstacles
distribution as it is predicted by some of the following
models.

A. Fleischer-Friedel theory

One of the classical models to evaluate the strengthening
of the solid solution is referred as to the Fleischer-Friedel
(FF) model.’” The model’s main assumption is that the dis-
location line forms some bows?! between isolated pointlike
obstacles randomly distributed. The bow shape assumption
contrasts with what can be seen from our simulations in Fig.
1. The critical angle associated with the impurity strength is
a,=f,/2T,. The Friedel length is Lp=12sT;/cf,, where c is
the obstacle concentration which corresponds to ¢=4C,, to
account for the different configurations, i.e., above and be-
low the glide plane and for both partials (Table I). The CRSS
is then given by the balance between the Peach-Kohler force
and a mean-field regular array of obstacle 7.bLp=f,,. The FF
end formula reads

(1)

The corresponding plot of 7. against the Al density is re-
ported in Figs. 2(a) and 2(b) for the screw and the edge
dislocation, respectively. The FF theory is found to underes-
timate the CRSS of our simulations. Foreman and Makin3'#3
showed that Eq. (1) overestimates by about 10% the true
CRSS for some perfect pointlike obstacle random distribu-
tion so that the discrepancy between our simulation and the
FF model predictions could not be compensated by such a
correction. It is compelling that the FF model is not suitable
to compute the CRSS in the concentrated random Ni(Al)
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solution. One must be reminded however that the FF model
proved reliable’! for some stronger obstacles as precipitates
and for smaller densities. It would be interesting to study by
MS the lower densities but then the finite-size sampling of
the Al distribution limits the statistics.

B. Mott-Nabarro-Labusch theory

The Mott-Nabarro-Labusch (MNL) theory has been built
from different contributions.’>11:445 The solute dislocation
interaction is assumed to be of a finite range w without pre-
suming of the attractive or the repulsive character of the
interaction. We introduce the parameter v=2w which agrees
with the definition of Nabarro for the interaction range. The
dislocation is still idealized by a perfect elastic string and its
configuration is assumed to be a quasi-straight line which
interacts with several solute atoms. Alongside the dislocation
core, in a ribbon of length 2L and width 2v, the number of
atomic sites in the planes contiguous to the glide plane is
8vL/s. The ribbon extent allows to account for the attractive
and repulsive parts of the interaction. Inside this ribbon a
counting of the obstacle gives in average 2n=8vLc/s. The
segment is sustained to a mean restoring force which de-
pends on the stiffness of the string. Mott* showed that this
force could be written as 2Lffnx/ L'v°T’; where x is the seg-
ment mean position and L’ is the mean distance between two
obstacles situated along the segment 2L. The distance L’ is
fixed by 4L'vc/s=1. Nabarro assumed? that the characteris-
tic length L could be identified as the distance above which
the string Green’s function vanishes: L=(L'vI,/V2f,,)*".
Following Mott and Nabarro,? the counting of the obstacles
situated in front and behind the segment 2L leads to a total
number of interactions 2n which the average force is *f,,/2.
These interactions yield a maximum fluctuation of \2nf,,/2
which must be equated to the external Peach-Kohler force
2Lbr, to obtain the CRSS:

2 1/3
o= (—C ”ﬁl) . @

b5,

Here the obstacles above and below the glide plane have
been accounted for. If one assumes that the two partials are
bound, one must replace ¢ with 2C,,;. The plot of the corre-
sponding CRSS has been reported in Fig. 2 and it is found to
underestimate the strengthening for the concentrated solu-
tions. The same results hold for the edge dislocation. It is
noteworthy that the MNL model is commonly thought to
provide a good description for the high densities. In the case
of our Ni(Al) solution, our comparison contrasts with such a
belief. However, as for the FF model at smaller densities it is
not excluded that the agreement could be recovered. An ex-
tended version of the MNL model has been proposed
elsewhere? to tentatively account for the different types of
obstacles, i.e., isolated and clusters with different pinning
strength f,, and interaction range w. Although this model
gave us some satisfactory results for both the edge and the
screw dislocation further developments are required to be
fully consistent on the theoretical treatment.
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C. Butt-Feltham theory

In the Butt-Feltham (BF) theory,>***7 an undissociated
dislocation liberates from a pinning configuration by nucle-
ation of a bulge. This critical bulge can be approximated by
a triangle shape of height W which corresponds to the saddle
point energy required to unzip the whole dislocation. Ac-
cording to Feltham W is estimated from the dislocation core
radius extent and thus for close-packed metals W=3b. As
other previous models in the BF theory it is proposed to
relate the CRSS to the in-plane obstacle density. Along the
dislocation line the interobstacle distance is roughly b/ Ve.
For a quantitative comparison we distinguish the mean dis-
tance in function of the different geometry for the edge and
the screw dislocation: N=v2b/+c and N=b/+c, respectively.
The enthalpy required to form a bulge is H=UL/\
+2W?T'/L—-tbWL/2, where U is the binding energy and L is
the bulge extent along the dislocation line. In the expression
for H, one recognizes the binding energy, the elastic cost for
the bulge and the work of the Peach-Kohler force. The bulge
curvature is determined by the external stress and thus for a
certain W we deduce the corresponding bulge extent L
=V8WI'/ 7b. At the critical configuration, the enthalpy can-
cels which gives the end result:

4U
T,=——. (3)
bWA
We assume that the binding energy can be estimated roughly
as U=f,,w and we account for the different obstacle configu-
rations by ¢=4C,;. The corresponding plot has been reported
in Figs. 2(a) and 2(b) for both edge and screw. Although the
predicted CRSS is quantitatively of the same order as the MS
simulation data, the BF theory predicts a 7. in \f‘a which
underestimates the hardening rate of our simulations. It
should be mentioned that Butt and Feltham also derived dif-
ferent power laws according to the variation of the bulge
height W. With such an extension the BF theory prediction
may agree better with the MS data.

D. Friedel-Mott-Suzuki theory

Another theory proposed by Friedel, Mott and Suzuki
(FMS) in their textbooks®® considers the few atoms around
an ideal undissociated dislocation line. This theory allows
the dislocation to take locally much larger curvatures than in
the FF model. The first effect of this pinning of the disloca-
tion is to give the dislocation a “zigzag” shape. The interac-
tion is characterized by a binding energy U which we ap-
proach by f,,w valid for a linearized force. We briefly recall
the model derivation. The amplitude of the zigzag in the
glide plane is denoted by W and its wavelength alongside the
dislocation line is denoted by L. According to Friedel® the
number of solutes contained in the glide plane area WL/2 is
given by the inverse of the surface density, i.e., WL/2=s/c.
However a careful counting leads us to WL=s/c since the
construction of a regular two-dimensional lattice where the
obstacle are separated by L in the Y direction and W in the X
direction leads us to WL=s/c which agrees with Suzuki’s
derivation.® The binding energy per unit of length is E,
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=2f,w/L. The line tension energy involved in the zigzag is
given by E,=I'(N(W?>+L?/4)—L/2)/(L/2)=~2T'W?/L? at
first order in W/L. By minimizing the difference E,—E; one
obtains the optimal value of the zigzag W=(f,ws/4Ic)'3
that fixes the line shape and thus E;=2wWc/s and E,
=4Ic®>W*/s>. The application of external shear stress de-
forms the dislocation. It has been assumed that the effect of
the external shear stress is to unzip the line from the ob-
stacles at the bottom of the zigzag, where the line tension
exerts a maximum force in the glide direction. Considering
that the maximum of the potential energy is a straight line
(W=0), bound to the obstacle situated at the top of the
former zigzag, the energy difference between this maximum
and the zigzag configuration is (-E,/2)—(E,—E;). Multi-
plied by the wavelength L this gives the work that must be
provided by the external shear stress to overcome the pinning
barrier. The area that is comprised between the two configu-
rations of the line, zigzag and straight, is WL/2, so the stress
work is 7.bWL/2 which must equal (E,/2—E,)L. The end
result for 7. is

fuwe
T.=T.
sb

(4)

Noteworthily this expression for the CRSS does not depend
on the line tension in contrast to the other models. To apply
the theory to our system, the input parameters are estimated
similarly and we assumed that ¢=4C,,. In Figs. 2(a) and
2(b), it is remarkable that the 7, linear dependency in Cy, is
much closer from the simulations than a fractional power
law. The FMS assumption of a zigzag shape is closer from
the wavy profile of the dislocation seen in Fig. 1. The agree-
ment between our data and the theory is better for the screw
[Fig. 2(a)] than for the edge [Fig. 2(b)] since for the latter the
FMS model slightly overestimates the CRSS. With the force
model parameters for a screw dislocation, the amplitude of
the zigzag is W=0.43b at Cp=2 at. % and W=0.25b at
Cp=10 at. %. Besides the fact that such an amplitude is
smaller than what can be depicted in Fig. 1, the model pre-
dicts W to decrease with C,;. We studied the dislocation
roughness and found the opposite trend. In view of the dis-
crepancy on the edge CRSS, our procedure to compute the
model parameters from our atomistic data can be discussed.
To improve this transfer from the atomic scale to a continu-
ous theory, we emphasize that some improvements of the
model would be required to account for the dissociation of
the dislocation core and the various types of obstacles.

IV. SUMMARY AND PERSPECTIVES

The aim of the present paper was to extend the study of
CRSS for a solid solution Ni(Al) to a screw dislocation. We
carried out two types of computation: (i) the CRSS of a
random distribution of solutes at different concentration Cjy,
and (ii) the pinning strength of some different obstacles, iso-
lated Al or dimers. We found that the CRSS and the pinning
strengths of the screw dislocation are of the same order as
the edge ones studied elsewhere.?> Such a result could not be
expected from a first-order elastic theory which convention-
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ally ascribes the screw pinning to a modulus misfit effect in
contrast to the dominant size effect in the edge case. For the
isolated Al impurities, this result has been clearly identified
as a consequence of the dissociation of the dislocation core
and the edge components of the Shockley partials cores. The
Al clusters pinning forces have been shown not to derive
from the linear superposition of the isolated obstacle strain
field.

Another issue of the present paper was to tentatively ap-
ply some analytical models to compute the CRSS. To that
purpose, the elementary input parameters of the models were
compiled from our atomistic data. The analytical models that
we considered only account for the isolated foreign atoms
situated in the planes that bound the glide plane. The Friedel-
Mott-Suzuki theory provides us a better agreement for the
Ni(Al) model solid solution. The estimation of the interac-
tion range between the dislocation and the obstacle is how-
ever to be questioned because of the presence of the stacking
fault and other nearest obstacles. Our work emphasizes that
the SSH theory has to be developed to integrate more of the
atomistic details of the dislocation solute interaction. We be-
lieve that the accuracy of the SSH theory in the fcc solid
solution requires to integrate the dissociation of the disloca-
tion as well as the possibility for cluster formation in the
concentrated solution. The farther obstacles as those situated

in the second and third (111) planes were found to yield a
pinning strength that is not negligible in comparison to the
solute atoms that bound the glide plane. We also tested other
SSH theories involving mixing laws as the Pythagorean
one*® but they are essentially devoted to model the random
distribution of pointlike obstacles and finally did not allow us
to obtain a better agreement.
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To predict quantitatively the CRSS in a variety of mate-
rials, we believe that an extended use of the empirical inter-
atomic potentials is not feasible at the present state of our
skill in developing such potentials. The recent progress of the
first-principles calculations for alloys and dislocations**-° al-
lows us to expect that the pinning strength could be com-
puted with a better accuracy. However it is difficult to imag-
ine that the statistics could be also studied with such methods
because of the associated computational load. The effective
interatomic potential can thus be employed to explore the
frontier between the atomic details and the SSH statistics as
we attempted in the present paper. In the near future, we
shall propose to extend our work to the Al(Mg) solid solu-
tion. Our motivation rests on the fact that the interatomic
potentials were proved physically reliable for the study of the
alloy plasticity?*?* and the physical properties of the Al(Mg)
solid solution differ from the Ni(Al) ones, e.g., a larger size
effect and a higher stacking fault energy. The temperature
effect on the SSH and therefore the dynamics of a dislocation
in a disordered media is an eagerly difficult problem at the
atomic scale because of the time limit of the molecular dy-
namics simulations. Moreover some puzzling problems of
physics can be anticipated: (i) At the low temperature the
inertial effect leads to a loss of strength,”! (ii) at higher tem-
perature the activation of the diffusion yields a dynamic
aging?® and (iii) for the intermediate temperature an odd
athermal plateau on the yield stress has been clearly identi-
fied experimentally for various solutions and remains diffi-
cult to interpret through a simple theory.’>>> We keep scruti-
nizing the works about those topics which suffer from a lack
of modern investigations.
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